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Abstract. We prove the existence of an additive semigroup of cardinality 2c contained in
the intersection of the classes of Hamel functions (HF) and Sierpi«ski-Zygmund functions
(SZ). In addition, we show that under certain set-theoretic assumptions the lineability of
the class of Sierpi«ski-Zygmund functions (SZ) is equal to the lineability of the class of
almost continuous Sierpi«ski-Zygmund functions (AC ∩ SZ).

1. Introduction

The symbols N, Q, and R denote the sets of positive integers, rational and real numbers,

respectively. The cardinality of a set X is denoted by the symbol |X|. In particular, |N| is

denoted by ω and |R| is denoted by c. We consider only real-valued functions. No distinction

is made between a function and its graph. For any two partial real functions f, g we write

f +g, f −g for the sum and di�erence functions de�ned on dom(f)∩dom(g). We write f |A

for the restriction of f to the set A ⊆ R. For any subset Y of a vector space V over the �eld

E, any v ∈ V , and any e ∈ E we de�ne v + Y = {v + y : y ∈ Y } and eY = {ey : y ∈ Y }.

Recently, there have been lots of attention devoted to �nding "large" structures (e.g.,

vector spaces, algebras) contained in various families of real functions (see [1, 3�6, 8�10, 12,

16, 18]). In this article we also consider �less restrictive� structures like groups and even

semigroups. In case of many classes of functions the problem is trivially solved by using

already known results about vector spaces contained in those classes (as these vector spaces

have maximal possible dimensions). However, in certain situations looking for the "largest"

group or semigroup may be of interest.

We will recall here some of the most recent de�nitions related to the theory of lineability

(see [3,5,6]). Let V be a vector space over the �eld E, F ⊆ V , and κ be a cardinal number.
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We say that F is star-like (with respect to E) if eF ⊆ F for all e ∈ E \ {0}. In addition, F

is de�ned to be κ-lineable (over E) if F ∪{0} contains a subspace of V of dimension κ. The

(coe�cient of) lineability of the subset F over the �eld E is denoted by LE(F) and de�ned

as follows

LE(F) = min{κ : F is not κ-lineable over E}.

In the case E = R we simply write L(F).

Proposition 1.1. Let V be a vector space over the �eld E2 and E1 be a sub�eld of E2. If

F ⊆ V is star-like with respect to E2, then the following holds.

(1)

LE1(F) ≥

{
((LE2(F)− 1) · dimE1(E2))

+ , if LE2(F) < ω

LE2(F) · (dimE1(E2))
+ , otherwise.

(2) If E1 is the smallest sub�eld of E2 and G is an additive group contained in F ∪ {0},

then E1G =
⋃
e∈E1

eG is a vector subspace of V over E1 contained in F ∪ {0}.

Proof. (1) Choose any κ < LE2(F) and let W ⊆ V be a subspace over E2 contained in

F ∪ {0} such that dimE2(W ) = κ. Obviously, W is also a subspace when considered over

E1 and it can be veri�ed that

dimE1(W ) = κ · dimE1(E2).

Indeed, if {fξ : ξ < κ} is a basis of W over E2, then {qλfξ : ξ < κ, λ < dimE1(E2)} is a basis

of W over E1, where {qλ : λ < dimE1(E2)} is a basis of E2 over E1.

Now, if LE2(F) < ω then the largest possible κ is LE2(F)−1 and in this case dimE1(W ) =

(LE2(F)− 1) · dimE1(E2) and consequently LE1(F) ≥ ((LE2(F)− 1) · dimE1(E2))
+.

If LE2(F) ≥ ω, then LE1(F) ≥ max{LE2(F), (dimE1(E2))
+} = LE2(F) · (dimE1(E2))

+.

(2) Since G ⊆ F ∪ {0} and F is star-like obviously E1G ⊆ F ∪ {0}. Additionally, observe

that

E1 =

{
±en
ek

: k, n ∈ Z+ and ek 6= 0, where ei is the sum of i 1's

}
∪ {0}.

Therefore, for all g1, g2 ∈ {G} and q1, q2 ∈ E1 \ {0} we have

q1g1 + q2g2 = ±
en1

ek1
g1 ±

en2

ek2
g2 =

1

ek1ek2
(±en1ek2g1 ± en2ek1g2) ∈ E1G.

Hence, E1G is a vector subspace of V over E1 contained in F ∪ {0}. �
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Observe that in general, the weak inequality in part (1) cannot be replaced by equality

neither strict inequality. Indeed, if F is a vector space over E2, then there is equality in part

(1). On the other hand if we pick V = RR, E1 = Q, E2 = R, B to be a basis of V over E2,

and de�ne F = spanQ(B) ∪
⋃
e∈R eB then we have LE1(F) = 2c and LE2(F) = 2. Hence in

that case there is strict inequality > in part (1).

As a consequence of the above proposition, let us note here that if E1 = Q and E2 = R

then for any star-like F we have that LQ(F) ≥ (dimQ(R))+ = c+. Additionally, every

additive group contained in F ∪ {0} has cardinality less than LQ(F).

In this article we consider the following classes of functions. A function f : R→ R is:

• an extendability function provided there exists a connectivity function F : R×[0, 1]→

R such that f(x) = F (x, 0) for every x ∈ R (f ∈ Ext);

• almost continuous (in sense of Stallings) if each open subset of R2 containing the

graph of f contains also the graph of a continuous function from R to R (f ∈ AC);

• Hamel function if the graph of f is a Hamel basis for R2 (f ∈ HF);

• Sierpi«ski-Zygmund if for every set Y ⊆ R of cardinality continuum c, f |Y is dis-

continuous (f ∈ SZ).

Recall here that the class of all continuous functions is contained in Ext, Ext ⊆ AC,

Ext∩SZ = ∅, AC∩SZ 6= ∅ under additional set-theoretical assumptions (e.g., CH, Martin's

Axiom), Ext ∩ HF 6= ∅, AC ∩ HF 6= ∅, and HF ∩ SZ 6= ∅ (see [17]). In addition, a function

f : R → R is almost continuous if and only if it intersects every blocking set , i.e., a closed

set K ⊆ R2 which meets every continuous function and is disjoint with at least one function

from R to R. The domain of every blocking set contains a non-degenerate connected set.

(See [11].) For f ∈ F ⊆ RR we say that a set A ⊆ R is f -negligible with respect to F if for

every function g such that f |(R \A) ≡ g|(R \A) we have that g ∈ F .

It is known that L(SZ) > c+ (see [9]) and that 2c-lineability of SZ is undecidable in

ZFC (see [10]). In [10] the authors also proved (Theorem 2.2) that for any c < κ ≤ 2c,

L(SZ) > κ is equivalent to the existence of an additive group in SZ ∪ {0} of cardinality κ.

This immediately implies the following property.

Remark 1.2. LQ(SZ) = L(SZ).
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In the case of Hamel functions we have the following: L(HF) = 2 and LQ(HF) = c+

(see [18]).

2. Semigroup in HF ∩ SZ and lineability of AC ∩ SZ

We will be using the following two lemmas to prove the existence of "large" semigroups

in HF ∩ SZ, Ext ∩HF, and AC ∩HF ∩ SZ (under the assumption of CH).

Lemma 2.1. [17, Lemma 7] Let V ⊆ Rn be a Hamel basis and v′ ∈ V . For each v ∈ V �x

qv ∈ Q such that qv′ 6= −1. Then the set V ′ = {v + qvv
′ : v ∈ V } is also a Hamel basis.

Lemma 2.2. There exists a function h ∈ HF∩Ext and a set X ⊆ R of cardinality c which

is h-negligible with respect to Ext. Assuming CH, there exists a function h ∈ AC∩HF∩SZ

and a set X ⊆ R of cardinality c which is h-negligible with respect to AC.

Proof. Let F ⊆ R be a linearly independent c-dense Fσ set (see [14, Theorem 11.7.2]).

Then there exists a function f ∈ Ext such that R\F is f -negilgible (see [7]). Using [17, Fact

6] we obtain the existence of a function h ∈ HF such that h|(R \F ) ≡ f |(R \F ). Obviously,

h ∈ Ext and X = R \ F is h-negligible with respect to Ext.

In the proof of Theorem 2 in [17] (page 123) a function h is constructed which belongs to

AC ∩HF ∩ SZ (under CH). One can easily see that this function h has a dense graph. It is

known that for an almost continuous function f with a dense graph, every nowhere dense

set is f -negligible with respect to AC (see [13]). �

Theorem 2.3. Both HF ∩ Ext and HF ∩ SZ contain an additive semigroup of size 2c. In

addition, assuming CH, the same holds for AC ∩HF ∩ SZ.

Proof. We will prove the statement for the family AC ∩HF ∩ SZ. By the previous lemma,

under the assumption of CH there exists a function h ∈ AC ∩HF ∩ SZ and a set X ⊆ R of

cardinality c which is h-negligible with respect to AC. De�ne H = {qh+h(0)g : q ∈ Q+, g ∈

Q+(X)} where Q+ is the set of positive rationals and Q+(X) = {f ∈ RR : f |(R \ X) ≡

0 and f(x) ∈ Q+ for x ∈ X}. Since h(0) 6= 0 (for every f ∈ HF f(0) 6= 0) we conclude that

|H| = 2c. Next observe that H is closed under addition as both Q+ and Q+(X) are closed

under addition.
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Finally we will justify that H ⊆ AC ∩ HF ∩ SZ. Obviously H ⊆ AC as AC is star-like

and X is h-negligible with respect to AC. To see H ⊆ HF recall that HF is star-like and

then use Lemma 2.1 with V = h, v′ = (0, h(0)), and qv = g(x)
q for v = (x, h(x)), q ∈ Q+,

g ∈ Q+(X) to conclude that h+h(0)gq is a Hamel function (h+h(0)gq is V
′ from Lemma 2.1).

Consequently, qh+ h(0)g = q(h+ h(0)gq ) ∈ HF.

To see H ⊆ SZ recall that SZ is star-like and observe that h(0)g is a countably continuous

function (e.g., union of countably many partial continuous functions) for all q ∈ Q+ and

g ∈ Q+(X). This implies qh+ h(0)g ∈ SZ.

The existence of semigroups of cardinality 2c in HF ∩ Ext and HF ∩ SZ can be justi�ed

in a very similar way (in the case of HF ∩ SZ use X = R). �

Theorem 2.4. Assume CH. Then L(AC ∩ SZ) > c+.

Proof. Let F = {fγ : γ < c} ⊆ (AC ∩ SZ) ∪ {0} be a vector space of dimension ≤ c. We

will show that there exists an h ∈ AC ∩ SZ \ F such that h+F ⊆ AC ∩ SZ. Since AC ∩ SZ

is star-like the latter will imply that {ah : ∈ R} + F is a vector space in (AC ∩ SZ) ∪ {0}

such that F ( {ah : ∈ R}+ F . Next using Zorn's lemma we will be able to conclude that

(AC ∩ SZ) ∪ {0} contains a vector space of dimension c+.

Let G = {gα : α < c} be the set of all continuous functions de�ned on Gδ subsets of

R = {xα : α < c}. For every α < c de�ne Uα to be the maximal open set such that

dom(gα \
⋃
ξ<α gξ) is residual in Uα. We will construct by induction a sequence of partial

functions hα (α < c) such that:

(i) hξ ⊆ hα for ξ < α;

(ii) |dom(hα)| ≤ ω and xα ∈ dom(hα);

(iii) (gζ ∩ (fγ + hα)) ⊆ (fγ + hξ) for ζ, γ ≤ ξ < α;

(iv) fγ + hα is dense subset of (gζ \
⋃
ξ<ζ gξ)|Uζ for ζ, γ ≤ α.

We start the construction of the sequence hα (α < c) by de�ning h0(x0) arbitrarily. Next

choose a countable dense subset D0 ⊆ (dom(g0) ∩ U0) \ {x0} and put (f0 + h0)|D0 ≡ g0|D0

(or equivalently h0|D0 ≡ (g0 − f0)|D0). It is easy to see that h0 satis�es all the conditions

(i)-(iv).
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Now �x α < c and assume that the sequence hβ has been de�ned for all β < α satisfying

the conditions (i)-(iv). Put hα =
⋃
β<α hβ . If xα /∈ dom(hα), then choose

hα(xα) ∈ R \
⋃

γ,β<α

{gβ(xα)− fγ(xα)}).

Next notice that since the conditions (i)-(iv) are satis�ed for all β < α to have that

fγ + hα is dense in (gζ \
⋃
ξ<ζ

gξ)|Uζ for ζ, γ ≤ α

it su�ces to assure the above condition for ζ = α or γ = α. Choose a collection of pairwise

disjoint countable sets Dγ,ξ ((γ < α and ξ = α) or (γ = α and ξ ≤ α)) contained in

R \

dom(hα) ∪
⋃

ξ1,ξ2,γ1,γ2≤α,γ1 6=γ2

dom((gξ1 − gξ2) ∩ (fγ1 − fγ2))

 ,

such that Dγ,α is dense subset of dom(gα \
⋃
β<α gβ) ∩ Uα (γ < α) and Dα,ξ is dense

subset of dom(gξ \
⋃
β<ξ gβ) ∩ Uξ (ξ ≤ α). Note here that the above choice is possible as

|dom((gξ1 − gξ2) ∩ (fγ1 − fγ2))| ≤ ω for ξ1, ξ2, γ1, γ2 ≤ α, γ1 6= γ2 because gξ1 − gξ2 is a

continuous function, fγ1 − fγ2 ∈ SZ, and we work under the assumption of CH. Now we

de�ne fγ+hα|Dγ,α ≡ gα|Dγ,α for γ < α and fα+hα|Dα,ξ ≡ gξ|Dα,ξ for ξ ≤ α. This �nishes

the construction of hα. It is clear that hα satis�es the conditions (i), (ii), and (iv).

To see that the condition (iii) is also satis�ed let us pick ξ < α and ζ, γ ≤ ξ. By the

inductive assumption we obtain that (gζ ∩ (fγ +
⋃
β<α hβ)) ⊆ (fγ + hξ). Therefore to

conclude that (gζ ∩ (fγ + hα)) ⊆ (fγ + hξ) we need to justify that gζ ∩ (fγ + hα|{xα}) = ∅,

gζ ∩ (fγ + hα|Dγ1,α) = ∅ (γ1 < α), and gζ ∩ (fγ + hα|Dα,ξ) = ∅ (ξ ≤ α). The equality

gζ ∩ (fγ + hα|{xα}) = ∅ easily follows from the de�nition of hα(xα). To see gζ ∩ (fγ +

hα|Dγ1,α) = ∅ (γ1 < α) note that gζ ∩ (fγ+hα|Dγ1,α) = gζ ∩ (fγ−fγ1 +gα)|Dγ1,α. If γ = γ1,

then gζ ∩ (fγ + hα|Dγ1,α) = gζ ∩ gα|Dγ1,α = ∅ as Dγ1,α ⊆ dom(gα \
⋃
β<α gβ). If γ 6= γ1,

then gζ ∩ (fγ + hα|Dγ1,α) = (gζ − gα) ∩ (fγ − fγ1)|Dγ1,α = ∅ as

Dγ1,α ∩
⋃

ξ1,ξ2,γ1,γ2≤α,γ1 6=γ2

dom((gξ1 − gξ2) ∩ (fγ1 − fγ2)) = ∅.

Very similarly we can justify that gζ ∩ (fγ + hα|Dα,ξ) = ∅ (ξ ≤ α). Hence the condition (iii)

holds for hα. This �nishes the inductive de�nition of the sequence hα (α < c) satisfying the

conditions (i)-(iv).
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De�ne h =
⋃
α<c hα. Obviously dom(h) = R. The conditions (ii)-(iii) imply that h+fγ ∈

SZ for all γ < c as any partial continuous function can be extended to a continuous function

on a Gδ subset of R (see [15]) and (gζ ∩ (fγ + h)) ⊆ (fγ + hmax(ζ,γ)) for all ζ < c.

Next we will argue that h + fγ is almost continuous for every γ < c. Let B ⊆ R2 be

any blocking set. There exists a non-empty open interval I ⊆ dom(B) and a continuous

function g such that dom(g) is Gδ dense subset of I and g ⊆ B. Let ζ0 be the smallest

ordinal number with the property that gζ0 |I ⊆ B and dom(gζ0)∩ I is residual in I for some

non-empty open interval I ⊆ dom(B). Then dom(gζ0 \
⋃
ξ<ζ0

gξ) is also residual in I (since

we assume CH). Therefore, I ⊆ Uζ0 and since fγ + h is dense subset of (gζ0 \
⋃
ξ<ζ0

gξ)|Uζ0
(condition (iv) for α = max(γ, ζ0)) we obtain that

∅ 6= (h+ fγ) ∩ (gζ0 \
⋃
ξ<ζ0

gξ)|I ⊆ (h+ fγ) ∩ gζ0 |I ⊆ (h+ fγ) ∩B.

This implies that h+ fγ ∈ AC. �

Let us mention here that assuming GHC the above theorem implies that AC ∩ SZ is

2c-lineable and consequently L(AC ∩ SZ) = L(SZ). On the other hand, there is a model of

ZFC (see [2]) in which AC ∩ SZ = ∅. These two observations imply the following.

Corollary 2.5.

(1) It is consistent with ZFC that L(AC ∩ SZ) = L(SZ).

(2) It is consistent with ZFC that L(AC ∩ SZ) < L(SZ).

It would be interesting to know if it is possible to have AC ∩ SZ 6= ∅ and L(AC ∩ SZ) <

L(SZ). We state that as an open problem.

Problem 2.6. Is it consistent with ZFC that AC ∩ SZ 6= ∅ and L(AC ∩ SZ) < L(SZ)?
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